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 Point-based
Sparse fusion → Loss fine-grained semantics.

 Image-based (e.g., RVT)
Coupled encode → Noisy depth interfere semantics.

 Ours: Disentangled framework
① Visual semantics
②  Complementary high-level geometry

Fine-grained yet noisy: from real sensor depth
Robust but coarse-grained: from depth expert

(High-SNR semantics + 2D-to-3D priors help smooth noisy depth)
③      Low-level geometry: explicit 2D-3D correspondence
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① What is Robotic Manipulation Task?

Pick up the 
glue stick… 
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② Some Challenges in Robotic Manipulation
 Fine-grained spatial semantic understanding.
 Robustness to sensor noise.
 Low-level spatial structure inductive bias.

How to build robust spatial representations 
for robotic manipulation?

③  Comparison of Robotic Spatial Representations Solution

① Overall Framework

② Semantic-Guided Geometric Module ③ Spatial Transformer

① RLBench SOTA: 87.4% Success Rate

② Robust to Noise

④ Real-World Performance

③ Spatial Variant

4  Visualization & Further Work

General Robot

Equip Robot with Human-like Hippocampus Memory

From Spatial 
to Temporal
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