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ABSTRACT

Temporal context is essential for robotic manipulation because such tasks are in-
herently non-Markovian, yet mainstream VLA models typically overlook it and
struggle with long-horizon, temporally dependent tasks. Cognitive science sug-
gests that humans rely on working memory to buffer short-lived representations
for immediate control, while the hippocampal system preserves verbatim episodic
details and semantic gist of past experience for long-term memory. Inspired
by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action
framework for long-horizon robotic manipulation. A pretrained VLM encodes
the observation into perceptual and cognitive tokens that form working memory,
while a Perceptual-Cognitive Memory Bank stores low-level details and high-
level semantics consolidated from it. Working memory retrieves decision-relevant
entries from the bank, adaptively fuses them with current tokens, and updates
the bank by merging redundancies. Using these tokens, a memory-conditioned
diffusion action expert yields temporally aware action sequences. We evalu-
ate MemoryVLA on 150+ simulation and real-world tasks across three robots.
On SimplerEnv-Bridge, Fractal, and LIBERO-5 suites, it achieves 71.9%, 72.7%,
and 96.5% success rates, respectively, all outperforming state-of-the-art base-
lines CogACT and 7y, with a notable +14.6 gain on Bridge. On 12 real-world
tasks spanning general skills and long-horizon temporal dependencies, Memo-
ryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 im-
provement over state-of-the-art baseline. Project Page is available.

1 INTRODUCTION

Vision-Language-Action (VLA) models (Brohan et al., 2023; Kim et al., 2024; Black et al., 2024; Li
et al., 2024a; Kim et al., 2025; Sun et al., 2025), powered by large-scale cross-embodiment robotic
datasets (O’Neill et al., 2024; Walke et al., 2023; Brohan et al., 2022; Khazatsky et al., 2024; Bu
et al., 2025a) and pretrained Vision-Language Models (VLMs) (Karamcheti et al., 2024; Liu et al.,
2023b; Bai et al., 2023a), have achieved remarkable progress in robotic manipulation. However,
mainstream VLA models such as OpenVLA (Kim et al., 2024) and m (Black et al., 2024) rely solely
on the current observation, thereby overlooking temporal dependencies and performing poorly on
long-horizon temporal manipulation tasks. As shown in Fig. | (a), Push Buttons tasks exhibit almost
no visual difference before and after pushing, making it difficult to determine whether the action has
already been completed. This highlights the non-Markovian nature of manipulation, where earlier
actions influence later decisions, calling for temporal modeling. A naive strategy is to concatenate
consecutive frames as input to the VLM. However, it faces two critical limitations: (1) The quadratic
complexity of self-attention severely limits the usable temporal context length; (2) Sequential frame
inputs are misaligned with the model’s single-frame robotic pretraining distribution.
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Figure 1: (a) In Push Buttons tasks, pre- and post-push states look nearly identical, calling for
temporal modeling. (b) Humans handle manipulation tasks via a dual-memory system: working
memory (neural activity) supports short-term control, while episodic memory (hippocampus) pre-
serves long-term experience. (c) Inspired by this, MemoryVLA introduces a Perceptual-Cognitive
Memory Bank that consolidates low-level perceptual details and high-level cognitive semantics for
temporally aware decision making. (d) Memory VLA outperforms state-of-the-art baselines.

Research in cognitive science (Baddeley & Hitch, 1974; Tulving et al., 1972; Reyna & Brain-
erd, 1995) demonstrates that humans handle manipulation tasks through a dual-memory system
(Fig. 1 (b)). The brain encodes multi-modal sensory inputs into both perceptual and cognitive rep-
resentations. These representations are buffered in working memory via transient neural activity,
providing short-term retention for immediate decision-making. Concurrently, episodic memory,
the long-term memory system supported by hippocampus, encodes past experiences with temporal
index in two forms: verbatim representations preserving precise details and gist representations cap-
turing abstract semantics. During execution, working memory retrieves decision-relevant contexts
from episodic memory and integrates them with current representations to guide actions through
cerebellar control, while simultaneously consolidating new experiences into episodic memory.

Drawing on cognitive science insights, we propose MemoryVLA (Fig. 1 (c)), a Cognition-Memory-
Action framework for robotic manipulation that explicitly models temporal dependencies through
a Perceptual-Cognitive Memory Bank (PCMB). First, a vision encoder extracts perceptual tokens
from observation, while a large language model (LLM) processes them together with the language
instruction, leveraging commonsense priors to produce cognitive tokens. Perceptual and cognitive
tokens jointly form the working memory. Second, the PCMB stores both low-level perceptual details
and high-level cognitive semantics over long horizons. During retrieval, working memory buffers
current tokens and queries the PCMB with temporal positional encodings to fetch decision-relevant
historical contexts, which are adaptively fused with current tokens via a gating mechanism while si-
multaneously updating the PCMB. When capacity is reached, temporally adjacent and semantically
similar entries are consolidated to preserve essential information compactly. Finally, a memory-
conditioned diffusion action expert is conditioned on cognitive tokens, with perceptual tokens en-
riching them with fine-grained details, to produce temporally aware robotic action sequences.

We conduct extensive evaluations of Memory VLA across 3 robots and 150+ tasks with 500+ varia-
tions in simulation and real world. For SimplerEnv (Li et al., 2024b), Memory VLA achieves 71.9%
and 72.7% success rates on Bridge and Fractal suites, surpassing CogACT by 14.6 and 4.6 points,
further outperforming my. For LIBERO (Liu et al., 2023a), it achieves an average success rate of
96.5% across 5 suites (Spatial, Object, Goal, Long, and LIBERO-90), exceeding both CogACT and
7. For real-world evaluations, we introduce 12 tasks across Franka and WidowX robots, spanning
6 general tasks and 6 long-horizon temporal tasks. MemoryVLA achieves 85% and 83% scores on
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general and temporal tasks, outperforming CogACT by 9 and 26 points, and substantially surpassing
mo. Moreover, Memory VLA exhibits strong robustness and generalization under out-of-distribution
conditions involving varied backgrounds, distractors, objects, containers, lighting and occlusion.

Our contributions are summarized as follows:

* Inspired by human memory systems from cognitive science, we propose MemoryVLA,
a Cognition-Memory-Action framework that leverages VLM commonsense priors, a
perceptual-cognitive memory mechanism, and a diffusion action expert to capture long-
horizon temporal dependencies for robotic manipulation.

* We design a Perceptual-Cognitive Memory Bank with working memory that enables mem-
ory retrieval of decision-relevant contexts across high-level cognition and low-level per-
ception, memory fusion that adaptively integrates them with current representations, and
memory consolidation that merges temporally adjacent, semantically similar entries.

* MemoryVLA achieves state-of-the-art performance on SimplerEnv, LIBERO, and real-
world. It also demonstrates strong robustness and generalization. On challenging long-
horizon real-world tasks, it outperforms CogACT and 7 by significant margins, under-
scoring the importance of temporal memory modeling.

2 RELATED WORKS

Vision-Language-Action Models Driven by advances in visual foundation models (Radford et al.,
2021; Caron et al., 2021; Liu et al., 2024a; Zheng et al., 2024a; Zheng et al.; Zhang et al., 2025b),
robot imitation learning has progressed rapidly yet remains confined to small, task-specific policies
with limited generalization (Shridhar et al., 2023; Zhao et al., 2023; Chi et al., 2023; Goyal et al.,
2023). To overcome these, the success of VLMs (Achiam et al., 2023; Touvron et al., 2023; Liu et al.,
2023b; Bai et al., 2023b) and large-scale robot datasets (e.g., OXE (O’Neill et al., 2024), Agibot (Bu
et al., 2025a)) spawned the vision-language-action (VLA) paradigm. RT-2 (Zitkovich et al., 2023)
and OpenVLA (Kim et al., 2024) tokenize continuous actions into discrete tokens and use VLMs for
autoregressive prediction as if generating language. In contrast, 7y (Black et al., 2024), CogACT (Li
et al., 2024a), DexVLA (Wen et al., 2025) and HybridVLA (Liu et al., 2025b) adopt diffusion-
based policies (Chi et al., 2023; Liu et al., 2024b) as action heads, leveraging iterative denoising to
sample continuous control trajectories that capture diverse multimodal behaviors. However, none
of these methods explicitly model temporal dependencies. Robotic manipulation is inherently non-
Markovian, and neglecting history leads to failures on long-horizon temporal tasks.

Temporal Modeling in Robotics Temporal modeling has been extensively studied in computer
vision and autonomous driving (Wang et al., 2023; Liu et al., 2023c; Feng et al., 2023; Zhou
et al., 2024), yet it has not been fully explored in robotic manipulation. Octo (Mees et al., 2024),
RoboVLMs (Liu et al., 2025a), and Interleave-VLA (Fan et al., 2025) adapt the VLM paradigm
to model robotic video data in an interleaved image-text format. While conceptually elegant, this
format is complex to implement and computationally expensive, hindering its widespread applica-
tion. RoboFlamingo (Li et al., 2023) compresses vision-language representation into a latent token
and propagate it via LSTM (Hochreiter & Schmidhuber, 1997). The latent representation is ob-
tained in a relatively coarse manner and the fine-grained perceptual history is largely discarded.
TraceVLA (Zheng et al., 2024b) takes a different route, painting historical states as trajectories on
the current frame, yet discards rich semantic details. UniVLA (Bu et al., 2025b) incorporates past ac-
tions into input prompts, making an initial attempt at temporal modeling. However, it merely serves
as a Chain-of-Thought (Wei et al., 2022) process without effectively utilizing historical information.
In contrast, we model both high-level cognitive semantics and fine-grained perceptual details within
a memory framework, enabling effective temporal modeling for long-horizon manipulation.

3 METHOD

3.1 OVERVIEW OF MEMORYVLA

Problem Formulation We formulate robotic manipulation in VLA models as a sequential
decision-making process, where visual observations and language instructions are mapped to con-
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Figure 2: Overall architecture of MemoryVLA. RGB observation and language instruction are
encoded by a 7B VLM into perceptual and cognitive tokens, forming short-term working memory.
The working memory queries a perceptual-cognitive memory bank (PCMB) to retrieve relevant his-
torical context, including high-level semantics and low-level visual details, adaptively fuses it with
current tokens, and consolidates the PCMB by merging the most similar neighbors. The memory-
augmented tokens then condition a diffusion transformer to predict a sequence of future actions.

RHXWX3

trol actions for real world interaction. Given the current RGB image I € and a language

instruction L, a parameterized policy 7 outputs a sequence of future actions
A:(alw--aaT):Tr(IaL)v (1)

where each action a; = [Az, Ay, Az, Ab,, A, A0, g]" consists of relative translation, relative
rotation (Euler angles), and a binary gripper state g € {0,1}.

Overview MemoryVLA is an end-to-end framework for robotic manipulation, as shown in Fig. 2.
The current RGB observation and language instruction are first encoded by a VLM into percep-
tual and cognitive tokens, forming a working memory, analogous to neural activity in the visual
and prefrontal cortex associated with short-term memory. To complement this short-term store, we
introduce the Perceptual-Cognitive Memory Bank (PCMB), inspired by the hippocampus, which
maintains long-term high-level semantics and fine-grained perceptual details. Working-memory
embeddings query the PCMB to retrieve decision-relevant history, adaptively fuse it with current
representations via gating, and consolidate the memory by merging temporally adjacent and seman-
tically similar entries when capacity is reached. The resulting representations are then fed into a
memory-conditioned diffusion action expert to generate a sequence of [V future 7-DoF actions.

3.2  VISION-LANGUAGE COGNITION MODULE

‘We build upon a 7B—parameter Prismatic VLM (Karamcheti et al., 2024), which is further pretrained
on the large-scale cross-embodiment real robot dataset Open-X Embodiment (O’ Neill et al., 2024).
For visual encoding, we adopt parallel DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023)
backbones on the current third-person RGB image I, concatenating their features into raw visual
tokens. A perceptual compression module, implemented via a SE-bottleneck (Hu et al., 2018), then
compresses these tokens into a compact set of perceptual tokens p € RNr* % with N, = 256. In
parallel, the raw visual tokens are projected via a linear layer into the language embedding space and
concatenated with the tokenized instruction before being fed into the LLaMA-7B (Touvron et al.,
2023). The output at the end-of-sentence (EOS) position is taken as the cognitive token ¢ € R!* %,
representing high-level cognitive semantics in compact form. Finally, the perceptual tokens p and
cognitive token c are combined to form the short-term working memory for downstream modules.

3.3 PERCEPTUAL-COGNITIVE MEMORY MODULE

The Vision—Language Cognition Module yields a working memory
My = {p € RN»*d ¢ e RV¥d} )

where p and c represent the current perceptual tokens and cognition token, respectively. However,
this working memory only reflects the present timestep and lacks temporal dependencies.
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Figure 3: Details of memory module. (a) Retrieval: current perceptual and cognitive tokens query
the PCMB via cross-attention with timestep positional encoding to fetch relevant historical features.
(b) Gate fusion: current and retrieved tokens are adaptively fused via a gate mechanism. (c) Con-
solidation: the fused tokens are updated into PCMB. When PCMB reaches its capacity, we compute
similarities between adjacent entries and merge the most similar pair to maintain compactness.

To address this, inspired by the hippocampus in human memory systems, we introduce the Percep-
tual-Cognitive Memory Bank (PCMB):

Mpemb = {m” | z € {per, cog} }, 3)
m® = {mf e RN}k, € {per, cog}, )

where each perceptual entry m? stores fine-grained visual details and each cognitive entry m§ en-
codes a high-level semantic summary. The bank maintains up to L entries per stream.

Memory Retrieval At each timestep, the working memory My, comprising current perceptual
tokens p € RN»*% and cognition token ¢ € R**%, acts as a dual query to retrieve historical in-
formation required for the current decision from the Perceptual-Cognitive Memory Bank M ¢y, as
illustrated in Fig. 3 (a). Each memory entry is associated with its episode timestep via a sinusoidal
embedding TE(-), which is added as positional encoding. We then stack all perceptual memories
into a tensor € RXNr»* %> and cognitive memories into a tensor € RX* %, Scaled dot-product atten-
tion between the current tokens and these memory tensors produces raw outputs for both streams:

K* =[mi +TE(t1); ...; m{ + TE(tr)], V*=[m]; ...; mi], (5)

()T
q(\/cT)> VE " €{p, ¢}, x € {per, cog}. ©

This attention operation is followed by a feed-forward network to complete one Transformer layer,
and applying two such layers yields the final retrieved embeddings H? and H°.

H* = softmax(

Memory Gate Fusion As illustrated in Fig. 3 (b), the gate fusion process integrates the retrieved
embeddings H? and H° with the current working memory representations through learned gates.
For both the perceptual (z = p) and cognitive (z = c) streams, a gating vector is computed as

9" = o(MLP(concat[z, H"])), (7)
and applied to obtain the memory-augmented representation
F=g"OH" +(1-g") O ®)

Here, o denotes the sigmoid activation and © denotes element-wise multiplication. The resulting
memory-augmented features p and ¢ are then forwarded to the memory consolidation stage.

Memory Consolidation After gate fusion, the memory-augmented representations p and ¢ are
passed to the Memory-conditioned Action Expert and simultaneously updated to the PCMB. When
the number of stored entries exceeds L, cosine similarities are computed within each stream (per-
ceptual and cognitive) between adjacent entries. The pair with the highest similarity in each stream
is selected and merged by averaging their vectors, thereby reducing redundancy.

iy =argmax;_y  p_1€os(Ti, Tiy1), MG (Zis + Tiny1), = € {per,cog}. (9
This consolidation mechanism mitigates memory bloat by reducing redundancy, while preserving
the most salient perceptual details and semantic abstractions, thereby maintaining a compact repre-
sentation that supports efficient long-term memory.
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Figure 4: Experimental setup overview. Top: three simulation benchmarks, SimpleEnv-Bridge
with WidowX, SIMPLER-Fractal with Google Robot, and LIBERO with Franka. Bottom: real-
world evaluation on two suites, General and Long-horizon Temporal. In total, we evaluate three
robots across 10 suites, spanning over 150 tasks and 500 variations.

3.4 MEMORY-CONDITIONED ACTION EXPERT

Leveraging the memory-augmented working memory {p, ¢}, which integrates historical perceptual
and cognitive information, the action expert predicts a sequence of future actions {a1, as, ..., ar},
with T" = 16. This prediction allows the model to anticipate multi-step trajectories, reduce cumu-
lative error, and provide foresight for long-horizon execution. Since real-world robotic actions lie
in a continuous multimodal control space, we adopt a diffusion-based Transformer (DiT) (Peebles
& Xie, 2023) implemented with Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020),
using 10 denoising steps for efficient yet accurate trajectory generation. This architecture progres-
sively denoises a sequence of noisy action tokens, yielding precise continuous actions.

Specifically, at each denoising step, the noisy action tokens are injected with the sinusoidal encoding
of the denoising timestep and concatenated with the cognitive representation ¢. A cognition-attention
layer conditions the process with high-level semantic guidance, while a perception-attention layer
supplements fine-grained visual details from the perceptual features p. The combined representation
is then refined through a feed-forward network to obtain the denoised action at that step. The model
is trained with mean squared error (MSE) loss between the predicted and target actions, and the final
denoised vectors are passed through an MLP to generate continuous 7-DoF robotic actions.

4 EXPERIMENTS

To comprehensively evaluate Memory VLA, we organize experiments around five core questions: (1)
How does MemoryVLA compare with state-of-the-art methods on SimplerEnv? (Sec. 4.2) (2) How
does it perform on LIBERO? (Sec. 4.3) (3) Can it handle both general manipulation and long-horizon
temporal tasks on real robots? (Sec. 4.4) (4) What is the impact of each component? (Sec. 4.5) (5)
How robust and generalizable is it under diverse environmental conditions? (Appendix A)

4.1 EXPERIMENTAL SETUPS

Simulation and Real-world Benchmarks. Fig. 4 overviews our evaluation across simulation and
real-world, covering 3 robots, 10 suites, 150+ tasks with 500+ variations. SimplerEnv (Li et al.,
2024b) includes Bridge suite with a WidowX robot and Fractal suite with a Google robot. Fractal
provides two settings: Visual Matching (VM) and Visual Aggregation (VA). LIBERO (Liu et al.,
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Table 1: Performance comparison on SimplerEnv-Bridge (Li et al., 2024b) with WidowX robot.
CogACT-Large is our re-evaluated baseline using official weight, and MemoryVLA achieves a +14.6
gain in average success. Entries marked with * are reproduced from open-pi-zero, which leverage
additional proprioceptive state inputs; they also adopt Uniform/Beta timestep sampling.

Spoon Carrot  Stack Eggplant Avg.
Method on I")l"owel on Plate  Cube ingégsket Succgess
RT-1-X (O'Neill et al., 2024) 0.0 4.2 0.0 0.0 1.1
OpenVLA (Kim et al., 2024) 4.2 0.0 0.0 12.5 4.2
Octo-Base (Team et al., 2024) 15.8 12.5 0.0 41.7 17.5
Trace VLA (Zheng et al., 2024b) 12.5 16.6 16.6 65.0 27.7
RoboVLMS (Liu et al., 20252) 45.8 20.8 4.2 79.2 37.5
Spatial VLA (Qu et al,, 2025) 16.7 25.0 29.2 100.0 42.7
Magma (Yang et al., 2025) 37.5 29.2 20.8 91.7 44.8
CogACT-Base (Li et al., 2024a) 71.7 50.8 15.0 67.5 51.3
mo-Uniform* (Black et al., 2024) 63.3 58.8 21.3 79.2 55.7
CogACT-Large (Li et al., 2024a) 58.3 45.8 29.2 95.8 573
mo-Beta* (Black et al., 2024) 84.6 55.8 47.9 85.4 68.4
MemoryVLA (Ours) \ 75.0 75.0 37.5 100.0 \ 71.9 (+14.6)

Table 2: Performance comparison on SimplerEnv-Fractal (Li et al., 2024b) with Google robot.
Success rates (%) are reported for Visual Matching (VM) and Visual Aggregation (VA) suites. Memo-
ryVLA achieves an overall +4.6 gain over CogACT. O./C. denotes Open/Close, and * follow Tab. 1.

\ Visual Matching (VM) \ Visual Aggregation (VA) \
Method Coke Move O./C. Putin Coke Move O./C. Putin Overall
Can  Near Drawer Drawer V& | Can Near Drawer Drawer Ve

Octo-Base (Team et al., 2024) 17.0 42 22.7 0.0 11.0 0.6 3.1 1.1 0.0 1.2 6.1
RT-1-X (O"Neill et al., 2024) 56.7 31.7 59.7 21.3 424 | 490 323 29.4 10.1 30.2 36.3
OpenVLA (Kim et al., 2024) 18.0 563 63.0 0.0 343 | 60.8 67.7 28.8 0.0 39.3 36.8
RoboVLMS (Liu et al., 2025a) 76.3  79.0 449 27.8 57.0 | 50.7 625 10.3 0.0 30.9 44.0
TraceVLA (Zheng etal, 2024b) | 45.0  63.8 63.1 11.1 458 | 643  60.6 61.6 12.5 49.8 47.8
RT-2-X (O"Neill et al., 2024) 787 779 25.0 37 463 | 823 792 355 20.6 54.4 50.4
Magma (Yang et al., 2025) 75.0 53.0 58.9 8.3 488 | 68.6 785 59.0 24.0 57.5 53.2
Spatial VLA (Qu et al., 2025) 79.3  90.0 54.6 0.0 56.0 | 787 83.0 39.2 6.3 51.8 539

mo-Uniform* (Black etal, 2024) | 88.0 80.3 56.0 52.2 69.1 - - - - - -

mo-Beta* Black et al,, 2024) 97.9 78.7 62.3 46.6 714 — — — — — —
CogACT (Li et al., 2024a) 91.3 85.0 71.8 50.9 748 | 89.6  80.8 28.3 46.6 61.3 68.1

MemoryVLA (Ours) 90.7  88.0 84.7 472 717 | 80.5 788 532 58.3 67.7 | 72.7 (+4.6)

2023a) uses a Franka robot and spans five suites (Spatial, Object, Goal, Long, and LIBERO-90). In
real-world, we evaluate General and Long-horizon Temporal suites on Franka and WidowX robots.

Implementation Details We train on 8§ NVIDIA A100 GPUs with PyTorch FSDP, using 32 sam-
ples per GPU for a global batch of 256 and a learning rate of 2 x 10~°. The model takes a single
third-person RGB frame at 224 x 224 together with the language instruction and outputs 7-DoF
actions. The LLM is 7B, and the diffusion action expert has ~300M parameters. At inference we
use DDIM (Song et al., 2020) with 10 sampling steps and a classifier-free guidance(CFG) (Ho &
Salimans, 2022) guidance scale of 1.5. Additional details are provided in Appendix B and C.

4.2 SIMULATED EVALUATION ON SIMPLERENV

Training and Evaluation Setup We evaluate on two SimplerEnv suites: Bridge and Fractal. For
SimplerEnv-Bridge, we train on Bridge v2 dataset (Walke et al., 2023) for 50k steps with validation
every 2.5k steps. Results are reported at the best validation step, and each task is evaluated with 24
trials to compute success rates. For SimplerEnv-Fractal, we train on the RT-1 dataset (Brohan et al.,
2022) for 80k steps with validation every 5k steps. Evaluation covers Visual Matching (VM) and
Visual Aggregation (VA) settings. VM mirrors the real setup to reduce sim-to-real gap, while VA
stress-tests robustness by altering background, lighting, distractors, and table textures. The Fractal
testbed includes 336 variants, yielding 2,352 trials in total.

Evaluation Results on SimplerEnv-Bridge As shown in Tab. |, MemoryVLA achieves an aver-
age success rate of 71.9%, a +14.6 point gain over the CogACT-Large baseline, and surpasses recent
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Table 3: Performance comparison on LIBERO (Liu et al., 2023a) with Franka robot. Success
rates (%) are reported across five suites. * indicates methods using additional proprioceptive and
wrist-camera inputs. CogACT results are reproduced by us. For methods without LIBERO-90
results, we report the average over the first four suites.

Method | Spatial Object Goal Long LIBERO-90 | Avg. Success

Diffusion Policy (Chi et al., 2023) 78.3 92.5 68.3 50.5 - 72.4
OCto (Team et al., 2024) 78.9 85.7 84.6 51.1 - 75.1
MDT (Reuss et al., 2024) 78.5 87.5 73.5 64.8 - 76.1
UniACT (Zheng et al., 2025) 77.0 87.0 77.0 70.0 73.0 76.8
MalL (ia et al., 2024) 74.3 90.1 81.8 78.6 - 83.5
Spatial VLA (Qu et al., 2025) 88.2 89.9 786 555 46.2 71.7
Trace VLA (Zheng et al., 2024b) 84.6 85.2 75.1 54.1 - 74.8
OpenVLA (Kim et al., 2024) 84.7 88.4 79.2  53.7 73.5 75.9
CoT-VLA (Zhao et al., 2025) 87.5 91.6 87.6 69.0 - 81.1
To-FAST* (Pertsch et al., 2025) 96.4 96.8 88.6 60.2 83.1 85.0
TriVLA (Liu et al., 2025¢) 91.2 93.8 89.8 732 - 87.0
4D-VLA (Zhang et al., 2025a) 88.9 95.2 90.9 79.1 - 88.6
CogACT (Li et al., 2024a) 97.2 98.0 90.2 88.8 92.1 93.2
To* (Black et al., 2024) 96.8 98.8 95.8 852 - 94.2

MemoryVLA (Ours) | 984 984 964 934 95.6 | 96.5 (+3.3)

state-of-the-art VL As including 7y (Black et al., 2024). Per task, success rates are 75.0% on Spoon
on Towel, 75.0% on Carrot on Plate, 37.5% on Stack Cube, and 100.0% on Eggplant in Basket.

Evaluation Results on SimplerEnv-Fractal Tab. 2 reports results under Visual Matching and
Visual Aggregation settings. MemoryVLA achieves an overall success rate of 72.7%, improving
CogACT by +4.6 points and surpassing 7. By setting, the averages are 77.7% on VM and 67.7 %
on VA, gains of +2.9 and +6.4 points over CogACT, respectively. On Open/Close Drawer (VM),
it reaches 84.7%, a +12.9 point improvement over CogACT; under VA we observe larger gains,
including +24.9 on Open/Close Drawer and +11.7 on Put in Drawer.

4.3 SIMULATED EVALUATION ON LIBERO

Training and Evaluation Setup We evaluate on the LIBERO (Liu et al., 2023a) benchmark with
a Franka robot across five suites: Spatial, Object, Goal, Long, and LIBERO-90. The first four
suites contain 10 tasks each, and LIBERO-90 contains 90 tasks. Following OpenVLA (Kim et al.,
2024), 50 demonstrations per task are used. Separate models are trained for Spatial, Object, and
Goal for 20k steps each, while Long and LIBERO-90 are trained jointly for 40k steps. Validation is
performed every 1k steps and results are reported at the best validation step. Each task is evaluated
with 50 trials and per-suite average success rates are reported.

Evaluation Results on LIBERO As shown in Tab. 3, MemoryVLA achieves an overall success
rate of 96.5%, improving CogACT by +3.3 points and surpassing 7. Per-suite success rates are
98.4% on Spatial, 98.4% on Object, 96.4% on Goal, 93.4% on Long, and 95.6% on LIBERO-90.
Note that MemoryVLA uses only third-person RGB, without wrist views or proprioceptive states.

4.4 REAL-WORLD EVALUATION

Training and Evaluation Setup We evaluate two real-robot suites, General and Long-horizon
Temporal, on Franka and WidowX robots. Both use an Intel RealSense D435 RGB camera mounted
in a fixed front view. Images are captured at 640 x 480 and downsampled to 224 x 224. The system
is integrated via ROS. For General, each task uses 50-150 demonstrations and is evaluated from
randomized initial states. Pick Diverse Fruits comprises five variants with 5 trials per variant (25
total); all other General tasks use 15 trials. For Long-horizon Temporal, each task uses 200-300
demonstrations and is evaluated with 10-15 trials using step-wise scoring to reflect progress over
sub-goals. Training runs for approximately 5k—20k steps depending on the task and data size.

Evaluation Results on Real-world As shown in Tab. 4, MemoryVLA achieves average success
scores of 85% on the six General tasks and 83% on the six Long-horizon Temporal tasks, exceeding
CogACT by +9 and +26 percentage points, respectively, and surpassing my across both suites. On
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Table 4: Performance comparison on real-world experiments with Franka and WidowX
robots. Success scores (%) are reported over six general tasks and six long-horizon temporal tasks.
All methods are evaluated with only third-person RGB observation and language instruction.

\ General Tasks

Method Insert Egg Egg Stack Stack Pick Diverse Avg.
Circle inPan  in Oven Cups Blocks Fruits Success
OpenVLA (Kim etal., 2024) 47 27 53 40 13 4 31
To (Black et al., 2024) 67 73 73 87 53 80 72
CogACT (Lietal, 2024a) 80 67 60 93 80 76 76
MemoryVLA (Ours) 87 80 80 93 87 84 \ 85 (+9)
\ Long-horizon Temporal Tasks
Method Seq. Push Change  Guess Clean Table Pick Place  Clean Rest. Avg.
Buttons Food Where & Count Order Table Success
OpenVLA (Kim etal., 2024) 6 3 0 15 27
o (Black et al., 2024) 25 42 24 61 82
CogACT (Li et al,, 2024a) 15 47 40 67 90
MemoryVLA (Ours) 58 85 72 84 100 96 \ 83 (+26)

Table 5: Ablation on memory type and
length. We report average success rates
(%) on SimplerEnv-Bridge tasks.

Table 6: Ablation on memory retrieval, fu-
sion, consolidation. We report average suc-
cess rates (%) on SimplerEnv-Bridge tasks.

. Avg. . Avg.
Variant Success Variant Success
Cognitive Mem. 63.5 . w/o Timestep PE 69.8
M;mory Perceptual Mem. | 64.6 Retrieval w/ Timestep PE 71.9
ype Both 71.9 Fusi Add 67.7
4 67.7 usion Gate 71.9
Memory .
16 71.9 S FIFO 66.7
Length 64 67.7 Consolidation Token Merge 71.9

General tasks, we match or exceed the strongest baseline on every task, with notable gains on Egg
in Pan (+13) and Egg in Oven (+20). On Long-horizon Temporal tasks, improvements are larger,
including +43 on Seq. Push Buttons, +38 on Change Food, +32 on Guess Where, and +17 on Clean
Table & Count. These results indicate strong real-world competence on general manipulation and
highlight the benefits of temporal memory for long-horizon control.

4.5 ABLATION STUDIES

We ablate memory design on SimplerEnv-Bridge to quantify each choice. As shown in Tab. 5
combining perceptual and cognitive memory attains 71.9%, compared with 63.5% for cognitive-
only and 64.6% for perceptual-only. A memory length of 16 performs best at 71.9%, whereas 4 and
64 drop to 67.7%. Tab. 6 evaluates retrieval, fusion, and consolidation. Adding timestep positional
encoding increases performance from 69.8% to 71.9%. Gate fusion reaches 71.9%, compared with
67.7% for simple addition. Token-merge consolidation achieves 71.9% versus 66.7% with FIFO.

5 CONCLUSION

Inspired by cognitive science, we propose MemoryVLA, a Cognition-Memory-Action framework
for robotic manipulation. It uses a hippocampus-like Perceptual-Cognitive Memory Bank that coop-
erates with working memory to capture temporal dependencies. VLM commonsense priors further
support high-level cognition, while a memory-conditioned diffusion action expert generates tempo-
rally aware actions. Across 150+ tasks with 500+ variations on 3 robots spanning SimplerEnv,
LIBERO, and real-world, MemoryVLA consistently surpasses CogACT and m(, achieves state-
of-the-art performance, with notable gains on challenging long-horizon temporal tasks. It also
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demonstrates strong robustness and generalization under diverse OOD conditions. Future direc-
tions include (i) developing memory reflection, aligning long-term memory to the LLM input space
to enable embedding-space chain-of-thought reasoning; and (ii) building lifelong memory through
biologically inspired consolidation that distills frequently reused experiences into permanent repre-
sentations, thereby supporting scalable generalization across scenes, tasks, and embodiments.
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A ROBUSTNESS AND GENERALIZATION EVALUATION

A.1 REAL-WORLD EVALUATION

We further assess the robustness and generalization of Memory VLA in real-world environments un-
der diverse out-of-distribution (OOD) variants. Fig. 5 shows two representative tasks, Pick Place
Order and Clean Restaurant Table, evaluated under unseen backgrounds, distractors, novel ob-
jects/containers, lighting variations, and occlusions.

For Pick Place Order, MemoryVLA attains near-perfect success under the base setting (100%),
unseen background (100%), unseen distractors (92%), unseen lighting (96%), unseen container
(100%), and occlusion (96%), with a moderate drop on unseen objects (89%). For Clean Restau-
rant Table, the base success rate is 96%, with unseen background (92%), unseen distractors (86%),
unseen lighting (94%), unseen object (94%), unseen container (96%), and occlusion (94%).

These results confirm that MemoryVLA maintains consistently high performance across a wide
range of real-world OOD conditions, demonstrating strong robustness and generalization.

(a) Various OOD Variants of Pick Place Order
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Figure 5: Robustness and generalization under out-of-distribution (OOD) conditions in real-
world. (a,b) Examples of OOD variants for two representative tasks (Pick Place Order and Clean
Restaurant Table), including unseen backgrounds, distractors, lighting, novel objects/containers, and
occlusion. (c,d) Quantitative results showing that MemoryVLA maintains high success rates across
these OOD variants, demonstrating strong robustness and generalization in real-world environments.

A.2 SIMULATION EVALUATION

We further conduct robustness and generalization experiments in simulation, considering both pick-
and-move tasks and hinge-like object manipulation tasks. Fig. 6 presents results on Pick Coke Can
and Move Near, while Fig. 7 covers Open/Close Drawer and Place Apple Into Drawer. These tasks
are evaluated under unseen backgrounds, distractors, lighting, textures, and camera views.

For Pick Coke Can, MemoryVLA achieves a base success rate of 92.0%, with unseen distractors
(90.7%), unseen background (86.7%), unseen lighting (90.7%), and unseen texture (86.7%), while
performance drops substantially under unseen camera views (42.0%). For Move Near, the base suc-
cess rate is 76.0%, with unseen distractors (84.0%), unseen background (86.0%), unseen lighting
(84.0%), unseen camera view (58.0%), and unseen texture (86.0%). For hinge-like object manipula-
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(a) Various OOD Variants of Pick Coke Can
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(b) Various OOD Variants of Move Near
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Figure 6: Robustness and generalization under out-of-distribution (OOD) variants in simula-
tion: Pick and Move tasks. (a) Pick Coke Can and (b) Move Near tasks evaluated under unseen
backgrounds, distractors, lighting, textures, and camera views. Bar plots report the corresponding
success rates, showing that Memory VLA maintains strong performance across most shifts, with the
largest degradation under unseen camera views.

tion, Open/Close Drawer yields a base success rate of 46.3%, unseen background (56.4%), unseen
lighting (49.1%), and unseen texture (57.4%). For Place Apple Into Drawer, the base success rate
is 72.0%, with unseen background (66.0%), unseen lighting (52.0%), and unseen texture (50.0%).

These results show that MemoryVLA generalizes well across moderate distribution shifts such as
distractors, backgrounds, and textures, but suffers more under severe changes, especially unseen
camera views.

B ADDITIONAL TRAINING DETAILS
B.1 HYPER-PARAMETERS

Table 7: Training and model hyperparameters.

Hyperparameter Value
Batch size 32 x8
Learning rate 2% 107°
Repeated diffusion steps 4
Action trunking size 16
Perceptual token channels 256
Max grad. norm 1.0
CFG scale (classifier-free guidance) 1.5
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(a) Various OOD Variants of Open / Closed Drawer
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(b) Various OOD Variants of Place Apple Into Drawer
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Figure 7: Robustness and generalization under out-of-distribution (OOD) variants in simu-
lation: Hinge-like object manipulation. (a) OOD variants of Open/Close Drawer and (b) Place
Apple Into Drawer tasks, including unseen backgrounds, distractors, lighting, textures, and camera
views. Quantitative results indicate that Memory VLA generalizes well under moderate shifts, while
performance drops notably with camera views changes.

We summarize the main hyperparameters used in our experiments. The global batch size is 256
(32 x 8 GPUs), the learning rate is 2 x 10~°, and gradients are clipped at a max norm of 1.0. The
policy predicts a 16-step action chunk, and perceptual tokens use 256 channels. The diffusion policy
uses 4 repeated diffusion steps during training; inference uses DDIM with 10 sampling steps and a
classifier-free guidance scale of 1.5. See Tab. 7 for a concise summary.

B.2 TRAINING DATA

Bridge v2 For the SimplerEnv-Bridge benchmark, we train on BridgeData v2 (Walke et al., 2023),
a large-scale, language-conditioned real-robot manipulation dataset of roughly 60,000 teleoperated
trajectories collected on WidowX robots across diverse tabletop settings. Episodes pair language
instructions with demonstrations of skills such as picking, placing, pushing, stacking, and folding.

RT-1 For the SimplerEnv-Fractal benchmark, we use RT-1 (Brohan et al., 2022), a large-scale
real-world dataset of roughly 130,000 episodes spanning 700+ tasks, collected over 17 months by
the Google Robot fleet and paired with natural-language instructions.

LIBERO LIBERO (Liu et al., 2023a) provides simulation tasks with a Franka robot across five
suites: Spatial, Object, Goal, Long, and LIBERO-90, totaling 130 language-conditioned tasks. Each
task supplies 50 demonstrations.

Real-world We collect real demonstrations on Franka and WidowX robots using a fixed third-
person RGB setup, as shown in Fig. 8 and 9. A front-facing Intel RealSense D435 captures 640 x 480
RGB at 30fps. Franka uses a single end-effector per experiment, either the stock parallel gripper
or a Robotiq parallel gripper. Demonstrations are gathered by joystick teleoperation. The General
suite uses 50-150 demonstrations per task, and the Long-horizon Temporal suite uses 200-300 per
task. The system is integrated in ROS.
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Figure 8: Franka robot setup.

Intel Realsense WidowX Robot

D435 Camera \

Figure 9: WidowX robot setup.
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After collection, we perform a standardized preprocessing pipeline. Frames are downsampled to
224 x 224. We then subsample the video stream by retaining a frame whenever the end-effector
translation since the last kept frame exceeds 0.01 m or the orientation change exceeds 0.4 rad, and
we also enforce a maximum gap of 120 frames between kept frames. The processed episodes are
converted into the RLDS format for downstream training.

B.3 TRAINING SETUP

SimplerEnv-Bridge Models are trained for 50k steps on Bridge v2, the dataloader is implemented
as a streaming queue: each episode is pushed as a sequence of frames with an attached episode ID,
and batches are constructed by popping consecutive samples. Within a batch, frames come from a
single episode whenever possible; if an episode ends before the batch is filled, the remaining slots
are completed with frames starting from the next episode. The memory length is fixed to 16.

SimplerEnv-Fractal Models are trained for 80k steps on RT-1. The benchmark defines two pro-
tocols: Visual Matching (VM), which mirrors the real-robot setup, and Visual Aggregation (VA),
which perturbs background, lighting, distractors, and textures to test robustness. The dataloader
design and memory length follow the same setup as in SimplerEnv-Bridge.

LIBERO Following OpenVLA (Kim et al., 2024), we train with 50 demonstrations per task after
removing failed trajectories from the dataset. Spatial, Object, and Goal suites are trained separately
for 20k steps each, while Long-10 and LIBERO-90 (also referred to as Long-90) are treated as a
single family of long-horizon data and trained jointly for 40k steps. The dataloader adopts a grouped
sampling strategy: in each iteration, 16 frames are randomly sampled from within a single episode,
matching the memory length of 16 used throughout training.

Real-world Models are trained for 5k-20k steps depending on task and dataset size. The General
suite contains 50-150 demonstrations per task, while Long-horizon Temporal tasks use 200-300
demonstrations. The dataloader follows the same design as in SimplerEnv-Bridge, but memory
length differs by setting: 16 for General tasks and 256 for the longer-horizon Temporal tasks.

B.4 DATA AUGMENTATION

We apply standard per-frame augmentations to the third-person RGB stream during training. Aug-
mentations are applied in a fixed order: random resized crop, random brightness, random contrast,
random saturation, and random hue. The crop samples 90% of the image area with aspect ratio 1.0
and resizes to 224 x 224. Brightness is perturbed with magnitude 0.2, contrast and saturation are
scaled in [0.8, 1.2], and hue is shifted by up to 0.05. All augmentations are disabled at evaluation.

C ADDITIONAL EVALUATION DETAILS

C.1 SIMPLERENV

Evaluation follows the official CogACT protocol (Li et al., 2024a). We adopt the same evaluation
scripts and use the adaptive action ensemble strategy introduced in CogACT, with ensemble coeffi-
cient a = (.1, ensemble horizon set to 7 for Bridge and 2 for Fractal. For Bridge, models are trained
for 50k steps and validated every 2.5k steps, since the denoising objective of diffusion models does
not reliably indicate policy quality, we report success rates at the best validation step. For Fractal,
training runs for 80k steps with validation every 5k steps, and evaluation covers 336 variants in to-
tal (Tab. 10), we similarly report success rates at the best validation step, VM and VA settings are
evaluated separately.

Since the original paper only reported per-task success rates for CogACT-Base but not for CogACT-
Large, we re-evaluated the released CogACT-Large checkpoint in our setup and report those num-
bers for fairness. For 7y, results are taken from the open-source reproduction open-pi-zero, which
provides implementations with both uniform and beta timestep sampling strategies in flow match-
ing. We report results under float32 precision as in the public release. Note that open-pi-zero does
not provide numbers for the Fractal Visual Aggregation setting, and thus these are missing.
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C.2 LIBERO

Evaluation on LIBERO (Liu et al., 2023a) is conducted across all five suites (Spatial, Object, Goal,
Long, and LIBERO-90). Models are validated every 1k steps, and each task is evaluated with 50
trials. Success rates are reported at the best validation step. Unlike SimplerEnv, no action ensemble
strategy is used in our LIBERO experiments.

CogACT results are reproduced using the official codebase for fairness. For 7y and my-FAST, we
adopt reported numbers, noting that both methods leverage additional wrist-camera views and pro-
prioceptive states, while our approach relies solely on a single third-person RGB. Despite this differ-
ence in input modalities, our method consistently surpasses, achieving stronger performance without
extra sensory inputs.

C.3 REAL-WORLD

Evaluation uses 15-25 trials for General tasks and 10-15 trials for Long-horizon Temporal tasks. For
General tasks, Pick Diverse Fruits contains five variants (apple, orange, banana, chili, grape), each
evaluated with 5 trials (25 total). All other General tasks are evaluated with 15 trials each, and we
report task-level success rates.

For Long-horizon Temporal tasks, Seq. Push Buttons includes three button orders (blue-pink-green,
blue-green-pink, green-blue-pink), each tested with 5 trials. All other tasks are evaluated with 10
trials, and step-wise scoring is adopted to capture partial progress. The scoring rules are as follows:

* Seq. Push Buttons: pressing each correct button yields 30, with a bonus of 10 if all three
are correct. Loose matching is allowed (slight contact counts as a press).

* Change Food: lifting and removing the initial food (30), grasping the new food (30), and
placing it on the plate (30), with a 10 bonus for full success.

* Guess Where: grasping the cover (30), covering the block (30), and uncovering it (40).

* Clean Table & Count: five objects in total. For each object, clearing yields 10 points
and pressing the counter yields 10. Small counting errors (incomplete press / one extra
press) earn 5; major errors (missed count / multiple extras) earn 0. Empty grasps with clear
counting intent incur a 5-point penalty.

* Pick Place Order: carrot, banana, and orange must be picked and placed in sequence.
Each correct step earns 30, with a 10 bonus for full completion. Any order violation termi-
nates the attempt.

* Clean Restaurant Table: five objects in total. Each correctly sorted into trash bin or
storage bin scores 20. Misplacement earns 10, and merely lifting without correct placement
earns 5.

D ADDITIONAL EXPERIMENTAL DETAILS

Tab. 8 provides an extended version of Tab. 5 and 6, reporting per-task success rates on SimplerEnv-
Bridge for all ablation settings. Gray rows indicate the default configuration.

E TASK DETAILS

To ensure comprehensive evaluation across simulation and real-world settings, we summarize the
task design of each benchmark. We provide task templates, variation types, and the number of
variations per task to clarify the diversity and difficulty of evaluation.

E.1 REAL-WORLD TASKS

Tab. 9 shows the 12 tasks used in real-world evaluation, divided into General and Long-horizon
Temporal suites.
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Table 8: Details of ablation studies. We report average success rates (%) on SimplerEnv-Bridge
when varying five factors: (a) memory type, (b) memory length, (c) memory retrieval, (d) memory
fusion, and (e) memory consolidation. Gray rows indicate the default configuration.

Spoon Carrot  Stack Eggplant Avg.

Method on Towel onPlate Cube in Basket | Success
Cog. Mem. 70.8 58.3 29.2 95.8 63.5
(a) Memory Type Per. Mem. 83.3 54.2 20.8 100.0 64.6
Both 75.0 75.0 37.5 100.0 71.9
4 79.2 75.0 25.0 91.7 67.7
(b) Memory Length 16 75.0 75.0 37.5 100.0 71.9
64 79.2 54.2 375 100.0 67.7
(¢) Memory Retrieval w/o Timestep PE 83.3 62.5 50.0 83.3 69.8
Y w/ Timestep PE 75.0 75.0 37.5 100.0 71.9
(d) Memory Fusion Add 75.0 62.5 333 100.0 67.7
y Gate 75.0 75.0 37.5 100.0 71.9
() Memory Update FIFO 66.7 66.7 333 100.0 66.7
Yy up Token Merge 75.0 750 375 100.0 71.9

Table 9: Real-world tasks details. We list the instruction template, number of variations, and the
corresponding variation types for each task.

Task Name | Language Instruction Template | # Variations | Variation Type
Seq Push Buttons “Push the {color 1, color 2, and color 3} 3 Button color order
buttons in sequence”
Change Food “Move food off the plate, then put the other 2 Food object type in plate
food on it”
Guess Where “Place a cover over the block, then remove 1 -
the cover”
Clean Table & Count | “Clean the table item by item, and push the 1 -
button after each item cleaned”
Pick Place Order “Pick up carrot, banana and orange in order 7 Background, distractors,
and place them in the basket” lighting, object, container,
occlusion
Clean Restaurant Table | ‘“Place all trash into the trash bin and all 7 Background, distractors,
tableware into the storage bin” lighting, object, container,
occlusion
Insert Circle “Insert the circle on the square” 1 -
Egg In Pan “Put the egg into the pan” 1 -
Egg In Oven “Put the egg into the oven” 1 -
Stack Cup “Stack the green cup on the other cup” 1 -
Stack Block “Stack the yellow block on the red block” 1 -
Pick Diverse Fruit “Pick up {fruit} and place it in the basket” 5 Fruit category

General Tasks. Insert Circle: insert a circle onto a vertical pillar, requiring accurate positioning
and insertion. Egg in Pan: place an egg into a shallow frying pan, testing grasp stability and gentle
placement. Egg in Oven: put an egg into a small oven container, involving more constrained place-
ment than the pan. Stack Cups: stack one plastic cup on top of another, evaluating vertical alignment
and balance. Stack Blocks: stack a yellow block on top of a red block, focusing on precise spatial
alignment. Pick Diverse Fruits: pick a specified fruit from a tabletop with more than ten different
fruit types and place it into a basket, testing semantic understanding, visual diversity, and instruction
following.

Long-horizon Temporal Tasks. Seq. Push Buttons: push three buttons in a specified color se-
quence, stressing ordered memory and resistance to temporal confusion. Change Food: remove
a food item from a plate and replace it with another, requiring multi-step sequencing and correct
temporal ordering. Guess Where: cover a block with a container and later uncover it, testing re-
versible actions and consistent tracking over time. Clean Table & Count: clear items from the table
one by one while pressing a counter button after each removal, combining manipulation with ex-
plicit progress monitoring. Pick Place Order: pick up carrot, banana, and orange in a fixed order
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Table 10: SimplerEnv tasks details. VM = visual-matching, VA = variant-aggregation. For Fractal,
we report VM and VA separately; all Bridge tasks use a single setting.

| Task Name | Language Instruction Template | # Variations | Variation Type
Spoon On Tower “Put the spoon on the tower” 1 -
Carrot On Plate “Put the carrot on the plate” 1 -
Bridge Stack Cube “Stack the green cube on the yellow 1 -
cube”
Eggplant In Basket | “Put the eggplant in the basket” 1 -
Pick Coke Can “Pick up the coke can” VM: 12 ngDFx 4 can positionx3,

VA: 33 VA: base, backgroundsx2,
lighting x 2, textures x2, camera
viewsx?2, distractorsx2, can

positionx3.
“Move the {object} near the VM: 4 VM: URDF x4.
Fractal Move Near {reference}” VA: 10 VA: base, distractors,

backgroundsx2,  lightingx2,
textures X2, camera views x 2.

VM: 216 VM: env {open/closed} x {top,
middle, bottom}; URDFx4;
initial posex9.

VA: 42 VA: base, backgroundsx2,
lightingx2, cabinet stylesx2,

Open/Close Drawer | “Open/close the {level} drawer”

envx6.
“Put the {object} into the {level} VM: 12 VM: URDFx4; initial posex 3.
PutIn Drawer drawer” VA: 7 VA: base, backgroundsx2,

lighting X2, cabinet stylesx2.

and place them into a basket, enforcing sequence-sensitive planning under temporal dependencies.
Clean Restaurant Table: sort table items by category, placing trash into a trash bin and tableware
into a storage bin, representing a long-horizon task with semantic reasoning and complex multi-stage
sequencing.

E.2 SIMPLERENV TASKS

Tab. 10 summarizes the tasks in the SimplerEnv benchmark, which consists of two suites: Bridge
and Fractal.

The Bridge suite contains four tabletop manipulation tasks on WidowX robot: Spoon on Towel,
Carrot on Plate, Stack Cube, and Eggplant in Basket. Each task is paired with a single language
template, focusing on object placement and stacking primitives.

The Fractal suite builds on RT-1 data with Google robot and defines four tasks: Pick Coke Can,
Move Near, Open/Close Drawer, and Put in Drawer. Each task is evaluated under two protocols.
Visual Matching (VM) mirrors the real-world setup by varying object positions and URDFs, ensur-
ing alignment between simulation and deployment. Visual Aggregation (VA) introduces substantial
visual perturbations, including changes in backgrounds, textures, lighting, distractors, and camera
views, to stress-test robustness and generalization. Together, VM and VA yield 336 variants, pro-
ducing 2,352 evaluation trials.

E.3 LIBERO TASKS

Tab. 11 outlines the five suites of the LIBERO benchmark: Spatial, Object, Goal, Long, and
LIBERO-90. LIBERO-Spatial consists of tasks where the same object must be placed across vary-
ing target positions. LIBERO-Object focuses on handling diverse objects within a fixed scene lay-
out. LIBERO-Goal contains heterogeneous operations such as opening containers, placing objects,
or turning on appliances, performed in an unchanged environment. LIBERO-Long (also called
LIBERO-10) introduces ten extended tasks that require multiple sub-goals across different scenes,
while LIBERO-90 expands this setting to ninety tasks, providing a substantially more challenging
benchmark. In total, LIBERO offers 130 tasks in simulation with a Franka robot.
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Table 11: LIBERO tasks details. We list the language instruction templates and the total number
of tasks per suite.

Suite | Language Instruction Templates | #Tasks
Spatial \ pick up the OBJ SPATIAL_REL and place it on the TARGET \ 10
Object | pick up the FOOD and place it in the CONTAINER | 10

open/close the CONTAINER
open the DRAWER and put the OBJ inside
Goal | putthe OBJ on/in the TARGET 10
push the OBJ to the POSITION of the TARGET
turn on the APPLIANCE

put both OBJI and OBJ2 in the CONTAINER
turn on the APPLIANCE and put the OBJ on it
Long | putthe OBJ in the CONTAINER/APPLIANCE and close it 10
place OBJI on TARGET! and OBJ2 on TARGET2/at REL of TARGET2
pick up the OBJ and place it in the caddy COMPARTMENT

open/close CONTAINER/APPLIANCE [and put OBJ on/in it; optionally se-
quence with another open/close]

open CONTAINER and put OB/J in it

90 put/place OBJ in/on/under TARGET or at REL_POS 90
stack OBJ1 on OBJ2 [optionally place them in CONTAINER]

pick up OBJ and put it in CONTAINER (basket/tray)

place MUG on left/right PLATE or BOOK in caddy/on/under shelf
turn on/off APPLIANCE [optionally put OBJ on it]

F QUALITATIVE RESULTS IN REAL-WORLD

We present qualitative examples to complement the quantitative evaluation. Fig. 10 and 11 illustrate
rollouts on long-horizon temporal tasks in real-world. Fig. 12 shows general manipulation tasks in
real-world.
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(a) Sea Push Buttons: pL;Sh the blue, green‘, and pink buttongin sequence

(c) Guess Where: place a cover over the block, then remove the cover

Figure 10: Qualitative results of MemoryVLA on real-world long-horizon temporal tasks (I).
Representative examples include Seq Push Buttons, Change Food, and Guess Where tasks.
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(d) Clean Table & Count: clean the table one by one, and press the button for each item cleaned

Ef; Clean Restaura;lzTabie: place allEash items into th;trash bin and allitiable;vare into th; store;ge bin

Figure 11: Qualitative results of MemoryVLA on real-world long-horizon temporal tasks (II).
Representative examples include Clean Table & Count, Pick Place Order, and Clean Restaurant
Table tasks.
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(a) Insert Circle: insert the circle on the square

(c) Egg In Oven: put egg in oven

(d) Stack Cup: stack the green cup on the other cup

@ w @ 4 [ L]

(f) Pick Diverse Fruit: pick up the apple and place it in the basket

Figure 12: Qualitative results of MemoryVLA on real-world general tasks. Representative ex-
amples include Insert Circle, Egg in Pan, Egg in Oven, Stack Cups, Stack Blocks, and Pick Diverse
Fruits tasks.
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G QUALITATIVE RESULTS IN SIMULATION

Results on simulated environments are visualized in Fig. 13 and 14, covering both Bridge and Fractal
suites. Finally, Fig. 15 provides representative trajectories on LIBERO, spanning all five suites.

(c) Stack Cube: stack the green cube on the yellow cube

(d) Eggplant In Basket: put the eggplant in the basket

Figure 13: Qualitative results of MemoryVLA on SimplerEnv-Bridge tasks. Representative
examples include Spoon on Tower, Carrot on Plate, Stack Cube, and Eggplant in Basket tasks.
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(d)Put In Drawer: put the apple into the top drawer

Figure 14: Qualitative results of MemoryVLA on SimplerEnv-Fractal tasks. Representative
examples include Pick Coke Can, Move Near, Open/Close Drawer, and Put in Drawer tasks.
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mato sauce and place it in the basket

(b) Object: pick up the to

(e) LIBERO-90: close the microwave

Figure 15: Qualitative results of MemoryVLA on LIBERO tasks. Representative examples in-
clude tasks from Spatial, Object, Goal, Long, and LIBERO-90 suites.
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